Beweis Ableitung Sinus/Cosinus

1. Satz

\begin{align*} \sin(x)' =& \cos(x) \\ \cos(x)' =& -\sin(x) \end{align*}

2. Lemma

3. Beweis

3.1. Cosinus

\begin{align*} \cos(\theta)' =& \lim_{\varepsilon \to 0}\left(\frac{\cos(\theta + \varepsilon)-\cos(\theta)}{\varepsilon}\right) \\ =& \lim_{\varepsilon \to 0}\left(\frac{\cos(\theta)\cos(\varepsilon) - \sin(\theta)\sin(\varepsilon) - \cos(\theta)}{\varepsilon}\right) \\ =& -\cos(\theta) \cdot \lim_{\varepsilon \to 0}\left(\frac{1 - \cos(\varepsilon)}{\varepsilon}\right) - \sin(\theta) \cdot \lim_{\varepsilon \to 0}\left(\frac{\sin(\varepsilon)}{\varepsilon}\right) \\ =& -\cos(\theta) \cdot 0 - \sin(\theta) \cdot 1 \\ =& -\sin(\theta) \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 21:22