Ausmultiplizieren

1. Satz

\begin{align*} (a_1 + a_2 + ... + a_n) (b_1 + b_2 + ... + b_k) =& \\ =& (\sum_{i=1}^n a_i) (\sum_{j=1}^k b_j) \\ =& \sum_{i=1}^n\sum_{j=1}^k a_ib_j \end{align*}

2. Beweis

2.1. IA

\begin{align*} (a_1) (b_1) =& a_1b_1 \\ =& \sum_{i=1}^1\sum_{j=1}^1 a_ib_j\\ (a_1) (b_1 + b_2) =& a_1b_1 + a_1b_2\\ =& \sum_{i=1}^1\sum_{j=1}^2 a_ib_j \end{align*}

2.2. IA

\begin{align*} (a_1 + ... + a_n)(b_1 + ... + b_{k} + b_{k+1}) =& \sum_{i=1}^n a_i)(\sum_{j=1}^{k} + b_{k+1}) \\ =& \sum_{i=1}^n\sum_{j=1}^k a_ib_j + \sum_{i=1}^na_ib_{k+1} \\ =& \sum_{i=1}^n\sum_{j=1}^{k+1}a_ib_j \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 21:27