Beweis: Grenzwert \(\frac{1-\cos(\theta)}{\theta}\)

1. Satz

\begin{align*} \lim_{\theta \to 0^+}\left(\frac{1-\cos(\theta)}{\theta}\right) =& 0 \end{align*}

2. Lemma

3. Beweis

\begin{align*} \lim_{\theta \to 0^+}\left(\frac{1-\cos(\theta)}{\theta}\right) =& \lim_{\theta \to 0^+}\left(\frac{1-\cos(\theta)}{\theta} \cdot \frac{1+\cos(\theta)}{1+\cos(\theta)}\right) \\ =& \lim_{\theta \to 0^+}\left(\frac{1-\cos^2(\theta)}{\theta + \theta\cos(\theta)}\right) \\ =& \lim_{\theta \to 0^+}\left(\frac{\sin^2(\theta)}{\theta \left(1 + \cos(\theta)\right)} \right) \\ =& \lim_{\theta \to 0^+}\left(\frac{\sin(\theta)}{\theta} \cdot \frac{\sin(\theta}{\left(1 + \cos(\theta)\right)} \right) \\ =& \lim_{\theta \to 0^+}\left(\frac{\sin(\theta)}{\theta}\right) \cdot \lim_{\theta \to 0^+}\left(\frac{\sin(\theta}{\left(1 + \cos(\theta)\right)} \right) \\ =& 1 \cdot 0 \\ =& 0 \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 21:28