Assoziativgesetz für die Addition komplexer Zahlen
1. Satz
\begin{align*}
z_1,z_2,z_3 \in \mathbb{C} \\
(z_1 + z_2) + z_3 =& z_1 + (z_2 + z_3) \\
=& z_1 + z_2 + z_3
\end{align*}
2. Beweis
Seien \(a_1,a_2,a_3,b_1,b_2,b_3 \in \mathbb{R}\) sodass gilt:
\begin{align*} z_1 =:& a_1 + \mathrm{i}b_1 \\ z_2 =:& a_2 + \mathrm{i}b_2 \\ z_3 =:& a_3 + \mathrm{i}b_3 \end{align*}2.1. Addition
\begin{align*}
((a_1 + \mathrm{i}b_1) + (a_2 + \mathrm{i}b_2)) + (a_3 + \mathrm{i}b_3) =& ((a_1 + a_2) + \mathrm{i}(b_1 + b_2)) + (a_3 + \mathrm{i}b_3) \\
=& (a_1 + a_2 + a_3) + \mathrm{i}(b_1 + b_2 + b_3) \\
=& (a_1 + \mathrm{i}b_1) + ((a_2 + a_3) + \mathrm{i}(b_2 + b_3)) \\
=& (a_1 + \mathrm{i}b_1) + \left((a_2 + \mathrm{i}b_2) + (a_3 + \mathrm{i}b_3)\right)
\end{align*}