Basis (topology)

1. Definition

Let \(X\) be a set and \(\mathcal{B} \subseteq \mathcal{P}(X)\) a collection of subsets. \(\mathcal{B}\) is a basis for a topology on \(X\), if the following statements hold:

1.1. a)

\begin{align*} \bigcup_{B \in \mathcal{B}} B = X \end{align*}

1.2. b)

For \(B_1,B_2 \in \mathcal{B}\) and suitable \(B_j\) (possibly \(J = \emptyset\)) it holds that:

\begin{align*} \bigcap_{j \in J} B_j = B_1 \cap B_2 \end{align*}

see: Topology generated by a basis

Date: nil

Author: Anton Zakrewski

Created: 2024-10-12 Sa 23:00