natural isomorphism

1. Definition

Let \(\mathcal{C}, \mathcal{D}\) be categories and \(\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathcal{D}\) be functors.

A natural isomorphism is a natural transformation \(\eta: \mathcal{F} \Rightarrow \mathcal{G}\) with a two-sided inverse \(\eta^{-1}: \mathcal{G} \Rightarrow \mathcal{F}\).

i.e. for the composition it holds

\begin{align*} \eta \circ \eta^{-1} =& \mathrm{id}_{\mathcal{G}} \\ \eta^{-1} \circ \eta =& \mathrm{id}_{\mathcal{F}} \end{align*}

see: identity natural transformation

Date: nil

Author: Anton Zakrewski

Created: 2024-10-12 Sa 23:12