prime element
1. Definition
Let \(A\) be an Integral domain.
Then \(p \in A\) is said to be prime, if
- \(p \not\in A^{\times}\) is not a unit
- for \(p \mid \alpha \cdot \beta\) it follows that \(p \mid \alpha\) or \(p \mid \beta\).
Let \(A\) be an Integral domain.
Then \(p \in A\) is said to be prime, if
Date: nil
Created: 2024-10-11 Fr 22:27