set of a quotient field

1. Proposition

Let \(R\) be an Integral domain, then the quotient field is the set of equivalence classes \([(a,b)]\) for \(a,b \in R\) with

\begin{align*} [(a,b)] = [(a',b')] \Leftrightarrow a \cdot b' = a' \cdot b \end{align*}

with:

1.1. addition

\begin{align*} [(a,b)] + [(a',b')] =& [(ab' + a'b, bb')] \end{align*}

1.2. multiplication

\begin{align*} [(a,b)] \cdot [(a',b')] =& [(a \cdot a',b \cdot b')] \end{align*}

1.3. inverse

\begin{align*} [(a,b)]^{-1} =& [(b,a)] \end{align*}

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 14:59