exactness for an abelian category

1. Definition

Let 20230722-exact_group_homomorphisms_eb04be82533afa6bcab2b0d2106fd2828974c0d1.svg be a pointed finitely bicomplete category, 20230722-exact_group_homomorphisms_4b1c15f24d7ab80a74a3b53ca73896a63c39f14e.svg be objects with following diagram

20230722-exact_group_homomorphisms_51a3fa194803dfd777aaf608626def935e0b0d7c.svg

Then it is said to be exact at 20230722-exact_group_homomorphisms_3f0d1a599184c702673acd54eb025009a6fee805.svg, if

20230722-exact_group_homomorphisms_e5abb1821b2e4afd56185d520fb227157b69da59.svg

are naturally isomorphic, where 20230722-exact_group_homomorphisms_d3d5258de4d3f4b8a310204c4d7e0c1ee18e17cf.svg is the kernel and image in an additive category

i.e.

20230722-exact_group_homomorphisms_b6939b341918d4e8131244ca9f2d7fcc5a01bfa0.svg

commutes

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:19