commutative monoid
1. Definition
Let \(M\) be a monoid. Then \(M\) is said to be commutative, if for \(m_1,m_2 \in M\) it holds, that
\begin{align*} m_1 \cdot m_2 = m_2 \cdot m_1 \end{align*}Let \(M\) be a monoid. Then \(M\) is said to be commutative, if for \(m_1,m_2 \in M\) it holds, that
\begin{align*} m_1 \cdot m_2 = m_2 \cdot m_1 \end{align*}Date: nil
Created: 2024-10-13 So 15:19