localization as zero ring

1. Proposition

Let \(R\) be a commutative ring and \(S\) be a multiplicatively closed set. TFAE:

  1. the localization is the zero ring: \(S^{-1}R = \{0\}\)
  2. \(0 \in S\)

2. Proof

2.1. 1) \(\implies\) 2)

By Assumption \(\frac{1}{1} \cong \frac{0}{1}\), hence there exists an \(s \in S\) such that \(s \cdot (1 \cdot 1 - 0 \cdot 1) = s = 0\)

2.2. 2) \(\implies\) 1)

Suppose \(\frac{r}{s} \in S^{-1}R\), then we conclude

\begin{align*} \frac{0}{1} \sim \frac{r}{s} \end{align*}

since

\begin{align*} 0 \cdot (r \cdot 1 - 0 \cdot s) = 0 \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:22