colim functor

Definition

Let 20231017-colim_functor_46dda1acb3e09cc284f2d6c7915d12fe76c94e74.svg be categories and let 20231017-colim_functor_cca3f07711a61a22654524e9833480f12a9f2d8f.svg be the Category FunColimit

Then the colimit functor is defined as covariant functor

20231017-colim_functor_83dd664e3517bbe797bf1f347d7a888acd251f2d.svg

where 20231017-colim_functor_88e27e7c486c1d79e235f901fc7240d354f14829.svg is the morphism induced by the universal property

20231017-colim_functor_c55d87bbfef259101ce7b22621f65730a872e2ff.svg

Proof

objects

for each diagram 20231017-colim_functor_efd3312ed545d088fa760ed9c54001ae767b3aae.svg, choose a representative of the isomorphism class of colimits.
Uses AC,

identity

Given the identity natural transformation, the identity morphism 20231017-colim_functor_7ff1306357b6d751224a8bec730e76f47e6f17eb.svg makes the diagram commute.
By universal property, it is the only morphism making the diagram commute, hence by construction we get 20231017-colim_functor_b2390220fd225f5f24ba2601a33ec36b8d14d505.svg

composition

Suppose we have objects 20231017-colim_functor_6dba79754b4136d89e83dcda7161f65b9b4d8236.svg and natural transformations 20231017-colim_functor_7f6c015b2c1d51539c88fc42cde6e3f01f0f6b0d.svg
Then we get

20231017-colim_functor_5198caa820f6a7cf859d3ab0b298f5098fee99fe.svg

where both halfes commute, hence also the whole prim.
Therefore, we get a unique morphism

20231017-colim_functor_bc0b4a76720adf8af37c834b71a4344431e98bb5.svg

But the composition 20231017-colim_functor_bebf41ec1cf79d2026fd9d39fd4b313ebde440c4.svg makes also the diagram commute, hence by uniqueness induced by the universal property, we conclude, that

20231017-colim_functor_a41768e8c2e63ecf627e4316ed67ec070b362e44.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 17:26