product and equalizer imply existence of a limit

Proposition

Let 20231018-product_and_equalizer_imply_existence_of_a_limit_985b96adbc801fbbbe00ac354f4e5f9fa2a8c5dd.svg be a category, 20231018-product_and_equalizer_imply_existence_of_a_limit_8431a55b2701558e47cc1f99f9ef659cf89e9eef.svg a diagram and

  1. 20231018-product_and_equalizer_imply_existence_of_a_limit_7fe584be40343441579d69632ece3892f3541f29.svg the discrete subcategory of 20231018-product_and_equalizer_imply_existence_of_a_limit_f0a608dbff9190c788c8c4d0c41d6b6d5b23a016.svg with the induced functor 20231018-product_and_equalizer_imply_existence_of_a_limit_deec8aed3bf0fae973df2dce7844d4856d9b168b.svg
  2. 20231018-product_and_equalizer_imply_existence_of_a_limit_e67c6d66c3c66de819f233b3c1023064d96d13d4.svg the discrete category containing morphisms 20231018-product_and_equalizer_imply_existence_of_a_limit_4ac6858c3a3ca2f5fb5d0c74c109b43588176fb3.svg as objects for arbitrary 20231018-product_and_equalizer_imply_existence_of_a_limit_23f69219966ea5468c5df841c78a912f3ea42f5b.svg
  3. the functor 20231018-product_and_equalizer_imply_existence_of_a_limit_468c1122f4fa3d0a7d0a6e6a9c2e97d20dc6d5c1.svg with 20231018-product_and_equalizer_imply_existence_of_a_limit_ed75353b955520ce253d9938d70cb189b6f3f777.svg

Suppose that the categorical products for 20231018-product_and_equalizer_imply_existence_of_a_limit_72c4080c7305ed81d026ee3d4cef31b34e658e8f.svg and equalizers exist
Then the limit for 20231018-product_and_equalizer_imply_existence_of_a_limit_b1ce2f3d244b085c7309f3af2cd7b7609ff531ca.svg exists.

cumbersome notation :(

Proof

Let

20231018-product_and_equalizer_imply_existence_of_a_limit_87319707cdb3d38936de700bc4a1bd45914d7d69.svg

then for 20231018-product_and_equalizer_imply_existence_of_a_limit_3073f4e92b049b5385b9fbc249e27befc20f116a.svg with 20231018-product_and_equalizer_imply_existence_of_a_limit_e417206e9be9fb589d8ea94a84d96159d4c722f3.svg, we define 20231018-product_and_equalizer_imply_existence_of_a_limit_2824d2c76d2b80446c1cb83a077141830e479618.svg by following universal property

20231018-product_and_equalizer_imply_existence_of_a_limit_508d25f45010a77272519e6a97d9a9f6abeda388.svg

Furthermore, for 20231018-product_and_equalizer_imply_existence_of_a_limit_dc5fea8d1ce85dfc21dd9f541443fe7858e10b34.svg we define 20231018-product_and_equalizer_imply_existence_of_a_limit_4053e1b1f460197c1df1be14e79ec0c5f84a6a7b.svg by following universal property

20231018-product_and_equalizer_imply_existence_of_a_limit_4fa5ad97db4db5ac91d70a0b034c29ea0669fcc6.svg

Then the equalizer 20231018-product_and_equalizer_imply_existence_of_a_limit_8cd8355a93f61f08ad1b3b0fbbbea9b7cb160b65.svg

20231018-product_and_equalizer_imply_existence_of_a_limit_8d9889684bd8e270e81446fab4ca094e90b5f64f.svg

is the desired limit with

20231018-product_and_equalizer_imply_existence_of_a_limit_7a7b67a9df9ce193b23b98d0edd70831470d416c.svg

i.e.

20231018-product_and_equalizer_imply_existence_of_a_limit_ab144746c7be829594573efb8044f20394ffac4d.svg

(cf. morphism to product and each component)

  • sloppy

commutes

For 20231018-product_and_equalizer_imply_existence_of_a_limit_4e22ab3baa8c7fa5d4c91f218d61a4e51be5b44a.svg and 20231018-product_and_equalizer_imply_existence_of_a_limit_cd147f62589d9d799f8bb45806ebe0fe0b72fbdf.svg we conclude

20231018-product_and_equalizer_imply_existence_of_a_limit_2c5af565045a2791e926b3ce51b1dc4a12415f30.svg

commutes because of

20231018-product_and_equalizer_imply_existence_of_a_limit_422d5f387f6a68eda738dead07680111a7802918.svg

sloppy

universal property

Suppose there exists an 20231018-product_and_equalizer_imply_existence_of_a_limit_dc8fc442dddded85f3f5ead0ba0954d560bc5651.svg and morphisms 20231018-product_and_equalizer_imply_existence_of_a_limit_9966a2a5910d53916ca8a016a905e3ef25b7b2e5.svg such that

20231018-product_and_equalizer_imply_existence_of_a_limit_b1b95312221126fb41461ac42cb31397f3f22c44.svg

Then

20231018-product_and_equalizer_imply_existence_of_a_limit_85b7a19619d53173cffa778fa2da87a4937123f1.svg

since 20231018-product_and_equalizer_imply_existence_of_a_limit_360728c2f511d6e3b6c7f1c0d303b8c658d12c54.svg is a product, there exists a unique morphism 20231018-product_and_equalizer_imply_existence_of_a_limit_1f178a3978a4856dc8cf780cbd51562e1e932f21.svg for 20231018-product_and_equalizer_imply_existence_of_a_limit_cdb95322fabe87a3801a589ea82ee3239378df30.svg.

20231018-product_and_equalizer_imply_existence_of_a_limit_e3d2dbfdbe38c5bc620469d29076b32afd308b17.svg

By definition of 20231018-product_and_equalizer_imply_existence_of_a_limit_61335dc041e32e1b2893c129e5499b3851f976b6.svg and by assumption of 20231018-product_and_equalizer_imply_existence_of_a_limit_9966a2a5910d53916ca8a016a905e3ef25b7b2e5.svg, we get 20231018-product_and_equalizer_imply_existence_of_a_limit_523365aadd0ce4184d0b0f073212e0a334ffb44a.svg as fork

and by universal property of 20231018-product_and_equalizer_imply_existence_of_a_limit_8cd8355a93f61f08ad1b3b0fbbbea9b7cb160b65.svg as equalizer a unique map 20231018-product_and_equalizer_imply_existence_of_a_limit_6b8bfca4a8f2945d464ceea22835374f0a5ac8b5.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 17:24