composition of pointed homotopies

1. Proposition

Let \((X,x_0), (Y,y_0), (Z,z_0)\) be based spaces and

\begin{align*} f,f': X \rightarrow& Y \\ g,g': Y \rightarrow& Z \end{align*}

be pointed homotopic based maps. Then

\begin{align*} g \circ f \sim g' \circ f' \end{align*}

are pointed homotopic

2. Proof

corollary of

where \(x_0 \in g^{-1}[y_0]\)

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 19:07