composition of pointed homotopies
1. Proposition
Let \((X,x_0), (Y,y_0), (Z,z_0)\) be based spaces and
\begin{align*} f,f': X \rightarrow& Y \\ g,g': Y \rightarrow& Z \end{align*}be pointed homotopic based maps. Then
\begin{align*} g \circ f \sim g' \circ f' \end{align*}are pointed homotopic
2. Proof
corollary of
where \(x_0 \in g^{-1}[y_0]\)