Rational root theorem
Proposition
Let \(R\) be an UFD, \(f = \sum_{i=0}^{n} \alpha_i X^i \in R[X]\) a polynomial.
Suppose \(p,q\) are coprime elements, such that in the quotient ring
Then it follows, that
Proof
a)
We get
Hence
and since \(p,q\) are coprime, we conclude that
b)
\begin{align*}
0 =& f(\frac{p}{q}) \\
0 =& \sum_{i=0}^{n} \alpha_i \left(\frac{p}{q}\right)^i && \vert \cdot q^n
0 =& \alpha_n p^n + \alpha_{n-1} p^{n-1} q ... + \alpha_{1} p q^{n-1} + \alpha_0 q^{n} \\
- \alpha_n p^n =& \alpha_{n-1} p^{n-1} q ... + \alpha_{1} p q^{n-1} + \alpha_0 q^{n} \\
- \alpha_n p^n =& q \cdot (\alpha_{n-1} p^{n-1} + \alpha_{n-2} p^{n-2} q ... + \alpha_0 q^{n-1})
\end{align*}
Hence
and since \(p,q\) are coprime, we conclude that