equalizer and equal maps
1. Proposition
Let be a category, be objects, morphisms and the equalizer.
TFAE:
- is an equalizer
- are isomorphic
- the map is an epimorphism
2. Proof
2.1. 1) 2)
by assumption,
commutes
Suppose there exists an object and a morphism
Then there exists only one choice
making the diagram commute
2.2. 2) 3)
follows from
2.3. 3) 4)
follows from isomorphism as epimorphism
2.4. 4) 1)
By assumption, since
commutes, we conclude, that
Since is epi, it follows by definition, that