limit of chain complexes

1. Proposition

Let 20240123-limit_of_chain_complexes_985b96adbc801fbbbe00ac354f4e5f9fa2a8c5dd.svg be a pointed category and 20240123-limit_of_chain_complexes_46f368f9a46927861dca93903a62df9c519fa4e1.svg the category of chain complexes. Suppose there exists a diagram 20240123-limit_of_chain_complexes_c37cb0d7fd5d41de3a013ab52df228bba423de91.svg and all limits 20240123-limit_of_chain_complexes_ce5ca0e0967c14556bbefe1a7fa94f39a31d2716.svg, then a limit of the chain complexes is given by

20240123-limit_of_chain_complexes_7a6e8364da3367933c1df47505b10fbfb1c5cb08.svg

see: lim

2. Proof

2.1. special case

empty diagram, here the zero chain satisfies the requirements todo

2.2. construction

Consider a chain complex as diagram

20240123-limit_of_chain_complexes_aaf35b878c4c85f69aa2923ff5104df57215efb5.svg

Thus we get 20240123-limit_of_chain_complexes_1b3af8efce599a21dc19de549a2a0cd264d4026f.svg-shaped diagrams

20240123-limit_of_chain_complexes_80bcef2a44a9dcd9be959c0bba3bf9e2a297c2bf.svg

obtained by postcomposition with n-th component functor of chain complexes.

By commutativity of chain maps, we obtain natural transformations from the boundary maps 20240123-limit_of_chain_complexes_ab0a855cbbd21b62c0c4a24fc9c01108543a6fdb.svg

Hence taking the lim functor results in a diagram

20240123-limit_of_chain_complexes_160e44ea2544cb38946fd8536d63e90e3139b1e8.svg

It remains to show, that this is a valid chain complex. Choose an indexed chain complex 20240123-limit_of_chain_complexes_bbf31dc034fe5f901dd303ef8745f07fdbd40807.svg.

Then we get a commutative diagram

20240123-limit_of_chain_complexes_e5c772dc53f93ad187a9a22a0104ca3ce7c461ba.svg

and by boundary condition a zero morphism

20240123-limit_of_chain_complexes_c90ea1865430775c6501ac79bde72d7891fb6014.svg

Note that 20240123-limit_of_chain_complexes_f71bb215f16d0ab796f26014c5bc72ccd3d38fc9.svg makes the diagram commute, hence, since the morphism is induced by the universal property (cf. limit), we conclude, that 20240123-limit_of_chain_complexes_46213a69cc0fd8e7646d063f18a2b1b9e029e7db.svg is also the morphism in the bottom half

20240123-limit_of_chain_complexes_4adc2581f7256d5d3ca193d60fdf46d264a6f352.svg

2.3. universal property

Date: nil

Author: Anton Zakrewski

Created: 2024-10-20 So 09:10