zero object as cokernel for an epimorphism

1. Proposition

Let 20240125-epimorphism_with_zero_as_cokernel_985b96adbc801fbbbe00ac354f4e5f9fa2a8c5dd.svg be a pointed category and 20240125-epimorphism_with_zero_as_cokernel_e08d810fed313dafa6119deb03285ae027678f08.svg an epimorphism. Then the cokernel is the zero object

20240125-epimorphism_with_zero_as_cokernel_c4437e6c03caeef12aa5f60e19b096bdca8e1307.svg

2. Proof

Suppose there exists a morphism 20240125-epimorphism_with_zero_as_cokernel_54c21973ba5958f667db7311a91abbddd6dc65de.svg such that

20240125-epimorphism_with_zero_as_cokernel_a094af68cf7a812f9b10feae67b2681e860e0d34.svg

commutes. Then we conclude since the zero morphism factors through 20240125-epimorphism_with_zero_as_cokernel_ad6a03aaa8d3a8bd22f0e7659be6109d78aaf52a.svg, that

20240125-epimorphism_with_zero_as_cokernel_e283956215de463ac1c0d1bbf63f0ebe5d888ae4.svg

and hence

20240125-epimorphism_with_zero_as_cokernel_47afd922421bd2488c191a0f56c7df6a3c06c653.svg

Thus

20240125-epimorphism_with_zero_as_cokernel_91e7eff6dbe787a0bd5eaf5ff996bc62dbe37cf7.svg

commutes.

Uniqueness follows from the uniqueness of the zero morphism.

Date: nil

Author: Anton Zakrewski

Created: 2024-10-20 So 09:15