additive functor and biproduct

1. Proposition

2. Proof

2.1. 1) 20240220-additive_functor_and_biproduct_8c6f58af0e2c62d582c35c43258609be7d1220f5.svg 2)

2.1.1. zero object

Let 20240220-additive_functor_and_biproduct_4f3f4a78d521bad24a9c55bb1e7a9739a52634bd.svg be the zero object, then

20240220-additive_functor_and_biproduct_4f5d6c33618529f179dd71053088a58ecb7571e8.svg

Then by functorality, it follows, that

20240220-additive_functor_and_biproduct_791dbfd746be7f5b06e2760a9d80fd13e4bff7b5.svg

Furthermore it follows, that

20240220-additive_functor_and_biproduct_fd8a9307092ccb0fbeb85a55c2df810e17149625.svg

is a group-homomorphism, thus

20240220-additive_functor_and_biproduct_ef1ee2379697572c1aee01e34408a87fbb5bba78.svg

Therefore since 20240220-additive_functor_and_biproduct_b06b637febe165768a4c16ed31ea358ba6ed6842.svg we conclude that

20240220-additive_functor_and_biproduct_74d89c10c1d855b08f5a9da9ff52bb69c3237c35.svg

thus it follows by zero object and zero morphism as identity $(0) = 0$d

2.1.2. finite product

follows from biproduct in an ab-enriched category determined by morphisms

20240220-additive_functor_and_biproduct_5bb6e13c7e4fc17e43fda049199a13c023937a8a.svg

as 20240220-additive_functor_and_biproduct_8f83bce8911f5dacefb7fcfb9f46ab5e2f0d0cd1.svg preserves zero morphisms as stated above and 20240220-additive_functor_and_biproduct_e2ce10c2414e7990dd9bf997537f83f03daf004a.svg as functor, i.e.

20240220-additive_functor_and_biproduct_76518d91fcbb53573082002cebbd961013bfe7cf.svg

and furthermore

20240220-additive_functor_and_biproduct_34d96681fa29d07f3959b96b843eb2f7943f1488.svg

2.2. 2) 20240220-additive_functor_and_biproduct_8c6f58af0e2c62d582c35c43258609be7d1220f5.svg 1)

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 09:06