closed symmetric monoidal category
1. Proposition
Let \(\mathcal{C}\) be a symmetric monoidal category. Then \(\mathcal{C}\) is said to be closed, if the tensor functor of a monoidal category
\begin{align*} A \otimes - \end{align*}for all objects \(A \in \mathrm{Ob}(\mathcal{A})\) admits a right adjoint