closed symmetric monoidal category

1. Proposition

Let \(\mathcal{C}\) be a symmetric monoidal category. Then \(\mathcal{C}\) is said to be closed, if the tensor functor of a monoidal category

\begin{align*} A \otimes - \end{align*}

for all objects \(A \in \mathrm{Ob}(\mathcal{A})\) admits a right adjoint

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 09:16