right adjoint functor and objectwise representable
1. Proposition
Let \(\mathcal{C}, \mathcal{D}\) be categories, \(\mathcal{R}: \mathcal{C} \rightarrow \mathcal{R}\) a functor. TFAE:
- \(\mathcal{R}: \mathcal{D} \rightarrow \mathcal{C}\) is a right adjoint to the left adjoint \(\mathcal{L}\)
- for each \(d \in \mathrm{Ob}(\mathcal{D})\), the functor
2. Proof
2.1. 1) \(\implies\) 2)
2.2. 2) \(\implies\) 1)
we construct a functor using
\begin{align*} X \mapsto& \mathrm{Repr}(X) \end{align*}take isomorphism, by yoneda given by element