equivalence between infinity categories
1. Definition
Let \(\mathcal{C},\mathcal{D}\) be infinity categories and \(\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}\) a functor. Then \(\mathcal{F}\) is said to be an equivalence of categories, if
Let \(\mathcal{C},\mathcal{D}\) be infinity categories and \(\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}\) a functor. Then \(\mathcal{F}\) is said to be an equivalence of categories, if
Date: nil
Created: 2024-10-15 Di 23:18