complement dualizes union and intersection
1. Proposition
2. Proof
2.1. 1)
We note that the following are equivalent by definition:
- \(x \in \bigcap (X \setminus U_i)\).
- \(x \in X \setminus U_i\) for each \(i \in I\).
- \(x \in X\) and \(x \not\in U_i\) for each \(i \in I\).
- \(x \in X\) and \(x \not\in \bigcup U_i\)
- \(x \in X \setminus \bigcup U_i\)
2.2. 2)
We note that the following are equivalent by definition:
- \(x \in \bigcup (X \setminus U_i)\).
- \(x \in X \setminus U_i\) for some \(i \in I\).
- \(x \in X\) and \(x \not\in U_i\) for some \(i \in I\).
- \(x \in X\) and \(x \not\in \bigcap U_i\)
- \(x \in X \setminus \bigcap U_i\)