kappa infinity compact object

Definition

Let \(\kappa\) be a regular cardinal, \(\mathcal{C}\) an infinity category
Then \(c \in \mathcal{C}_0\) is said to be compact, if the mapping space functor

\begin{align*} \mathrm{map}_{\mathcal{C}}(c,-) \end{align*}

preserves kappa filtered colimits

Date: nil

Author: Anton Zakrewski

Created: 2024-12-09 Mo 07:50