representable functor as kappa compact object
Proposition
Let \(\mathcal{C}\) be an infinity category, \(\mathcal{P}(\mathcal{C})\) the infinity presheaf category and \(\mathrm{map}_{\mathcal{C}}(-,c)\) a presheaf for \(c \in \mathcal{C}\)
Then \(\mathrm{map}_{\mathcal{C}}(-,c)\) is a \(kappa\)-compact object for arbitrary \(\kappa\)
Proof
follows from the contravariant infinity yoneda lemma and pointwise calculation of colimits in a functor category