surjektiv und split epi in ZFC
Proposition
Assume the Axiom of choice.
Let \(X,Y\) be sets and \(f: X \rightarrow Y\) a map
TFAE:
- \(f\) is surjective
- \(f\) is split epi i.e. there exists a right inverse \(g: Y \rightarrow X\) such that
Proof
1) \(\implies\) 2)
Note that for each \(y \in Y\) the fibre \(f^{-1}[ \{y\}]\) is nonempty
Hence we may choose for each \(y \in Y\) an element \(x_y \in f^{-1}[ \{y\}]\).
Then define
This \(g\) then provides a right inverse
2) \(\implies\) 1)
Let \(y \in Y\).
Then \(g(y)\) is a preimage of \(y\) since