fully faithful inclusion of Q-vector spaces into Ab

Proposition

There exists a fully faithful inclusion of \(\mathrm{Vect}_{\mathbb{Q}}\) category vectk into Category Ab.

Proof

elementary

Let \(\varphi: V \rightarrow W\) be a group-homomorphism between \(\mathbb{Q}\)-vector spaces.
So let \(\frac{p}{q} \in \mathbb{Q} \setminus \{0\}\) be a scalar and \(v \in V\).
Then we want to show that

\begin{align*} \varphi( \frac{p}{q} v) = \frac{p}{q} \varphi(v) \end{align*}

We know that \(\frac{p}{q} = \sum_{i=1}^p \frac{1}{q}\) and hence

\begin{align*} \varphi( \frac{p}{q} v) =& \varphi( \sum_{i=1}^p \frac{1}{q} v) \\ =& \sum_{i=1}^p \varphi(\frac{1}{q} v) \\ =& p \cdot \varphi( \frac{1}{q} v) \end{align*}

Now \(V,W\) are in particular uniquely divisible abelian group, so \(\frac{1}{q} v\) is characterized by the property that \(\sum_{i=1}^q \frac{1}{q} v = v\).
Analogously \(\frac{1}{q} \varphi(v)\) is characterized by \(\sum_{i=1}^q \frac{1}{q} \varphi(v) = \varphi(v)\).

Now this shows

rational vector space is a property

spectra

use:

Date: nil

Author: Anton Zakrewski

Created: 2026-01-13 Di 22:09