fiber sequence of the inclusion of CPn into CP infinity

Proposition

The inclusion of 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_3f8a4a4db27cb3220a42f82ce83aa53bbba368c3.svg lives in a fiber sequence

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_8b50c0d17cdc010764a82427fc9fa0cbe097f07d.svg

Proof

a)

Let 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_e48941c0a5a06c6d59dae7d59e3d9059c02d8183.svg be the fiber of the inclusion.
Note that the skeleton inclusion 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_2e7aa64f2139e75992c2bc0e7844a25a5295f42d.svg is 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_e25f2d7aa66fec8ca8fda0b2f1d38efc02a6e5c4.svg connected.
Furthermore 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_abb07681d57fc92669346ac22107fc7f8dfacf4b.svg is simply connected.
Furthermore 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_2c970fa62d541020c596e04ea9142d35ca32e67b.svg of 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_665bf97a06c69d24b56d023dcde339bfface3604.svg has homology in degrees 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_03ef60b6829a0b9e5d07d73025c8e6482db14fbe.svg and above.

So relative Hurewicz theorem tells us that the homotopy of the fiber

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_2a3ca5e461ff4b0f8b3f7234fd7f93795b047daa.svg

and it has to be zero before that.

Now consider the cohomological serre spectral sequence, here exemplarily for 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_db29d3a78ed9d400d83de9d8ed74c7f7e1224d2a.svg

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_6497fee62f61e35b1fc458124c74ecaf3c741481.svg

Now the element 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_12861b45483688e80ae7c3e6951d46a1d65b255d.svg entry must be killed, since 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_e69e01b1b21c1c2c769471a590983d6d33fec7e8.svg.
Hence the map must be an isomorphism.

furthermore multiplication of a multiplicative spectral sequence under different pages tells us that 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_6379142783a72cbf07874b85c64ef6fa31913954.svg must be nonzero in the 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_6afe536e34a3f9b6c0fe361241238921ce06353d.svg page, since we will show that its differential under the leibniz rule will be nonzero:

The leibniz rule says up to sign

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_1c674cf27bc6b9e06f2e89aac9f5ca400b1c22e5.svg

so in particular 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_24c72150a49242e6da53434c64635e5cb2f27d15.svg and each 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_48b1265b166eca7170e2e240b7e76b291c5466b0.svg from the 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_839b3d0802ce26490f86da23e7698f04373e88ee.svg-th row must be an isomorphism - hence up until the

Furthemore 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_44e3883542b9c23ce8b480ac2e5435e0faa386c5.svg can't have homology in degrees above 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_7e2e6d3883704d56a9210fc1e34e9ab46f8deb8c.svg since then 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_61a15dd70c59dafe325bb6370a983944adc5ec60.svg can't be killed.

therefore nilpotent cohomology sphere is equivalent to a sphere shows that 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_be9e7272f4c7f5f1080b958fbedfb3dcfef54b6b.svg as desired

b)

Consider the fiber sequence

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_d1fc8943e0a07edd5f7bb289488fcd2b2897f738.svg

It is a principal 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_bc9f5571cb85de63fcf090a94e590875da384a58.svg bundle (todo ) so by the classification theorem of principal g-bundles we get a pullback

20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_7cca9ba23cd955a9ec47d63cc37af5c3438933f5.svg

for 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_ffb83c3f0c8c4dd8b6ee5cc2e8201d0c9c0ffd32.svg

But 20251211-fiber_sequence_of_the_inclusion_of_cp_n_into_cp_infinity_4b4ab02d8d98db7204339b984c96e8afd7ca0d48.svg is contractible, so in particular the infinite sphere is contractible space,

Date: nil

Author: Anton Zakrewski

Created: 2025-12-12 Fr 13:02