Algebra 1 - Tutorium (25/26)
Wiederholung
- Warnung: hatte keine zeit, das zu proofreaden oder sorgfältig vorzubereiten :/
- methods: irreducible polynomial
Example
- \(2 x^7 + 8x^4 + 4x^3 + 3\) in \(\mathbb{Z}[X]\)
- \(2x^3 + x - 1 \in \mathbb{Z}[X]\)
- \(x^3 - 5x^2 - 9x + 45 \in \mathbb{Z}[X]\)
- \(X^3 + 6X^2 + 12X + 9 \in \mathbb{Z}[X]\)
Aufgaben
a)
Decide which of the following polynomials are irreducible:
- \(X^3 + 3X + 2 \in \mathbb{F}_5[X]\)
- \(X^4 - 2X^2 - 8 \in \mathbb{Q}[X]\)
- \(-20 X^7 + 21X^3 - 7 X^2 + 28 \in \mathbb{Q}[X]\)
- (*) \(2X^4 - 8X^2 + 1 \in \mathbb{Q}[X]\)
- (*) \(X^2 + 6X + 10 \in \mathbb{Z}[X]\)
b)
prove the criterion about inverting coefficients:
Let $f = αn Xn + … + \(\alpha_0\).
TFAE:
- \(f\) is irreducible
- \(\sum_{i=0}^n \alpha_{n-i} X^i\) is irreducible
Hint:
consider the map
and show that it is a monoid isomorphism of \((R[X],\cdot)\).
c)
prove the rational root theorem:
Let \(R\) be an UFD, \(f = \sum_{i=0}^{n} \alpha_i X^i \in R[X]\) a polynomial.
Suppose \(p,q\) are coprime elements, such that in the quotient ring
Then it follows, that
d)
find all irreducible polynomials in \(\mathbb{F}_2[X]\) with \(\mathrm{deg}(f) \leq 3\) (or \(\mathrm{deg}(f) \leq 4\))