
Lineare Algebra 1
Beispielaufgaben mit Lösungsweg

Aufgabe 1. Wir betrachten den Körper F7
∼= Z/7Z. Bestimme alle Lösungen des fol-

genden linearen Gleichungssystems über F7:

[3]7 · x1 + [5]7 · x2 + [2]7 · x3 = [1]7
[1]7 · x1 + [4]7 · x3 = [1]7
[5]7 · x1 + [3]7 · x2 + = [1]7

(1)

Lösungsvorschlag. Wir schreiben das LGS zunächst in die Form Ax = b um:[3]7 [5]7 [2]7
[1]7 [0]7 [4]7
[5]7 [3]7 [0]7


︸ ︷︷ ︸

=:A

·

x1
x2
x3


︸ ︷︷ ︸

=:x

=

[1]7
[1]7
[1]7


︸ ︷︷ ︸

=:b

Wir wissen aus der Vorlesung, dass der Lösungsraum eines LGS unter elementaren
Zeilen- und Spaltenumformungen erhalten bleibt. Wir vereinfachen also:[3]7 [5]7 [2]7 [1]7

[1]7 [0]7 [4]7 [1]7
[5]7 [3]7 [0]7 [1]7

 z1+[4]7·z2
z1+[2]7·z2−−−−−−→

[0]7 [5]7 [4]7 [5]7
[1]7 [0]7 [4]7 [1]7
[0]7 [3]7 [1]7 [6]7

 z1+[2]7·z3−−−−−−→

[0]7 [0]7 [0]7 [0]7
[1]7 [0]7 [4]7 [1]7
[0]7 [3]7 [1]7 [3]7

 [5]7·z3−−−−→

[0]7 [0]7 [0]7 [0]7
[1]7 [0]7 [4]7 [1]7
[0]7 [1]7 [5]7 [1]7

 =: (Ã | b̃)

Da nur elementare Zeilenumformungen verwendet wurden, gilt also für die jeweiligen
Lösungsräume:

LA,b = L
Ã,̃b

Man sieht schnell, dass eine spezielle Lösung für das obige LGS durch

x0 =

1
1
0


gegeben ist - nämlich indem man die einzige freie Variable x3 gleich 0 setzt.
Wir müssen zuletzt also noch den Lösungsraum des homogenen LGS bestimmen. Da
auch dieser nach Vorlesung unter elementaren Umformungen erhalten bleibt, gilt:

L homogen
A = L homogen

Ã
= {x ∈ F3

7|Ãx = 0}

= {(x1, x2, x3)t ∈ F3
7|x1 + [4]7 · x3 = [0]7 ∧ x2 + [5]7 = [0]7}

= {(x1, x2, x3)t ∈ F3
7|x1 = [3]7 · x3 ∧ x2 = [2]7 · x3}

= spanF7


 [3]7

[2]7
[1]7





Damit ist der Lösungsraum von (1) der affine F7-Unterraum

LA,b = x0 + L homogen
A =

[1]7
[1]7
[0]7

+

〈 [3]7
[2]7
[1]7

〉
F7

Aufgabe 2. Betrachte die folgenden Matrizen:

A :=


3 9 4 6
2 5 7 8
1 3 4 2
0 0 −2 2

 ∈ R4×4 Â :=


3 9 4 6
2 5 7 8
1 3 4 2
0 0 −2 2

 ∈ Z/8Z4×4

B :=

(
5 6
2 3

)
∈ R2×2 B̂ :=

(
5 6
2 3

)
∈ Z/8Z4×4

i) Berechne jeweils die Determinanten der einzelnen Matrizen.

ii) Entscheide, ob die Matrizen invertierbar sind.

iii) Berechne jeweils die Inverse der invertierbaren Matrizen.

Lösungsvorschlag. Bevor wir mit der Bearbeitung der Aufgabe beginnen, bemerken
wir, dass Z/8Z kein Körper ist. Wir halten vorab schon einmal fest, dass die Menge
der invertierbaren Elemente (auch Einheiten genannt) durch

(Z/8Z)× = {1, 3, 5, 7}

gegeben ist. Dabei sind alle Elemente ihr eigenes Inverses.

i) Wir entwickeln die Determinante von A nach der letzten Zeile und verwenden
dann die Regel von Sarrus:

det(A) = det



3 9 4 6
2 5 7 8
1 3 4 2
0 0 −2 2




= −(−2) · det

3 9 6
2 10 10
1 3 2

+ 2 · det

3 9 6
2 5 8
1 3 2


= 2 · (60 + 63 + 24− 20− 63− 72) + 2 · (30 + 72 + 36− 30− 72− 36)

= 2 · (−8) = −16

Daraus lässt sich auch sofort die Determinante von Â ablesen, nämlich:

det(Â) = [det(A)]8 = [−16]8 = 0

Für die Berechnung der anderen beiden Determinanten verwenden wir die aus
der Vorlesung bekannte Formel der Determinante für 2× 2 Matrizen:

det(B) = det

((
5 6
2 3

))
= 5 · 3− 6 · 2 = 15− 12 = 3



und analog zu oben können wir die Determinante von B̂ direkt ablesen:

det B̂ = [det(B)]8 = [3]8

ii) Die Matrizen A und B sind invertierbar, da ihre Determinanten nicht 0 sind
(wir erinnern uns: in einem Körper gilt K× = K \ {0}).
Die Determinante von B̂ ist in Z/8Z gleich Null, damit ist B̂ nicht invertierbar.
Zwar ist Z/8Z kein Körper, jedoch ist 3 in Z8 invertierbar, denn es ist [3]8 · [3]8 =
[9]8 = [1]8. Damit ist B̂ invertierbar.

iii) Wir wollen nun die Inversen zu A,B, B̂ bestimmen. Wir haben bereits mehrere
mögliche Vorgehensweisen kennen gelernt:

1. elementare Zeilenumformungen
3 9 4 6 1 0 0 0
2 5 7 8 0 1 0 0
1 3 4 2 0 0 1 0
0 0 −2 2 0 0 0 1

 1
3
·z1−−−→


1 3 4

3 2 1
3 0 0 0

2 5 7 8 0 1 0 0
1 3 4 2 0 0 1 0
0 0 −2 2 0 0 0 1

 z2−2z1
z3−z1−−−−→


1 3 4

3 2 1
3 0 0 0

0 −1 13
3 4 −2

3 1 0 0
0 0 8

3 0 −1
3 0 1 0

0 0 −2 2 0 0 0 1


−1·z2
3
8
·z3−−−→


1 3 4

3 2 1
3 0 0 0

0 1 −13
3 −4 2

3 −1 0 0
0 0 1 0 −1

8 0 3
8 0

0 0 −2 2 0 0 0 1

 z4+2z3−−−−→


1 3 4

3 2 1
3 0 0 0

0 1 −13
3 −4 2

3 −1 0 0
0 0 1 0 −1

8 0 3
8 0

0 0 0 2 −1
4 0 3

4 1

 1
2
·z4−−−→


1 3 4

3 2 1
3 0 0 0

0 1 −13
3 −4 2

3 −1 0 0
0 0 1 0 −1

8 0 3
8 0

0 0 0 1 −1
8 0 3

8
1
2

 z1−2z4
z2+4z4−−−−→


1 3 4

3 0 7
12 0 −3

4 −1
0 1 −13

3 0 1
6 −1 3

2 2
0 0 1 0 −1

8 0 3
8 0

0 0 0 1 −1
8 0 3

8
1
2


z1− 4

3
z3

z2+
13
3
z3−−−−−→


1 3 0 0 3

4 0 −5
4 −1

0 1 0 0 −3
8 −1 25

8 2
0 0 1 0 −1

8 0 3
8 0

0 0 0 1 −1
8 0 3

8
1
2

 z1−3z2−−−−→


1 0 0 0 15

8 3 −85
8 −7

0 1 0 0 −3
8 −1 25

8 2
0 0 1 0 −1

8 0 3
8 0

0 0 0 1 −1
8 0 3

8
1
2


Also ist

A−1 =


15
8 3 −85

8 −7
−3

8 −1 25
8 2

−1
8 0 3

8 0
−1

8 0 3
8

1
2


2. Berechnung mit Hilfe der Adjunkten: wir berechnen also die einzelnen Ein-

träge der Adjunkten z.B. unter Verwendung der Regel von Sarrus:

A1,1 = (−1)1+1 · det

5 7 8
3 4 2
0 −2 2

 = −30



A1,2 = (−1)1+2 · det

2 7 8
1 4 2
0 −2 2

 = 6

A1,3 = (−1)1+3 · det

2 5 8
1 3 2
0 0 2

 = 2

A1,4 = (−1)1+4 · det

2 5 7
1 3 4
0 0 −2

 = 2

A2,1 = (−1)2+1 · det

9 4 6
3 4 2
0 −2 2

 = −48

A2,2 = (−1)2+2 · det

3 4 6
1 4 2
0 −2 2

 = 16

A2,3 = (−1)2+3 · det

3 9 6
1 3 2
0 0 2

 = 0

A2,4 = (−1)2+4 · det

3 9 4
1 3 4
0 0 −2

 = 0

A3,1 = (−1)3+1 · det

9 4 6
5 7 8
0 −2 2

 = 170

A3,2 = (−1)3+1 · det

3 4 6
2 7 8
0 −2 2

 = −50

A3,3 = (−1)3+3 · det

3 9 6
2 5 8
0 0 2

 = −6

A3,4 = (−1)3+4 · det

 3 9 4
2 5 7
0 0 −2

 = −6

A4,1 = (−1)4+1 · det

9 4 6
5 7 8
3 4 2

 = 112

A4,2 = (−1)4+2 · det

3 4 6
2 7 8
1 4 2

 = −32

A4,3 = (−1)4+3 · det

3 9 6
2 5 8
1 3 2

 = 0



A4,4 = (−1)4+4 · det

3 9 4
2 5 7
1 3 4

 = −8

Wir erhalten also insgesamt:

A−1 =
1

det(A)
·Ãt =

1

−16
·


−30 −48 170 112
6 16 −50 −32
2 0 −6 0
2 0 −6 −8

 =


15
8 3 −85

8 −7
−3

8 −1 25
8 2

−1
8 0 3

8 0
−1

8 0 3
8

1
2


Um die Inversen von B und B̂ zu bestimmen, können wir die Formel für die
Inverse von 2× 2-Matrizen aus der Vorlesung verwenden. Für eine invertierbare

Matrix M =

(
a b
c d

)
ist

M−1 = (det(M))−1 ·
(

d −b
−c a

)
In R ist 3−1 = 1

3 , und somit erhalten wir

B−1 =
1

3
·
(

3 −5
−7 2

)
=

(
1 −5

3
−7

3
2
3

)
In Z/8Z hingegen ist 3−1 = 3, und damit

B̂−1 = 3 ·
(
3 3
1 2

)
=

(
1 1
3 6

)

Aufgabe 3. Wir betrachten die folgenden Vektoren im R3 bzw. R2:

b1 =

1
0
0

 b2 =

2
1
0

 b3 =

3
2
1

 bzw c1 =

(
2
1

)
c2 =

(
3
2

)

i) Zeige, dass B := {b1, b2, b3} eine R-Basis von R3 und C := {c1, c2} eine R-Basis
von R2 ist.

ii) Bezeichne mit B̂ die Standardbasis von R3 und mit Ĉ die Standardbasis von R2.
Wir betrachten die lineare Abbildung f : R3 → R2, die durch folgende darstellende
Matrix bezüglich der Standardbasen gegeben ist:

A := A
f,B̂,Ĉ =

(
1 −2 1
0 2 1

)
Bestimme die darstellende Matrix Af,B,C bezüglich der Basen B, C



Lösungsvorschlag. i) Wir wissen aus der Übung, dass eine Menge von Vektoren
genau dann eine Basis ist, wenn Sie eine maximale linear unabhängige Menge
ist. Da dimRR3 = 3 und dimRR2 = 2, reicht es also zu zeigen, dass die Systeme
B bzw. C linear unabhängig sind. Dazu betrachten wir

B :=
(
b1 b2 b3

)
=

1 2 3
0 1 2
0 0 1

 C :=
(
c1 c2

)
=

(
2 3
1 2

)

und berechnen

det(B) = 1 ̸= 0 det(C) = 22̇− 3 · 1 = 1 ̸= 0

Dann ist die darstellende Matrix bezüglich der Basen B, C gegeben durch

Af,B,C = M
id,C,Ĉ ·A

f,B̂,Ĉ ·M
id,B̂,B = C−1 ·A ·B

=
1

1
·
(

2 −3
−1 2

)
·
(
1 −2 1
0 2 1

)
·

1 2 3
0 1 2
0 0 1


=

(
2 −6 −15
−1 4 10

)


