Binomial theorem for a commutative ring

1. Satz

Sei \(R\) ein kommutativer Ring und seien \(x,y \in R\) sowie \(n \in \mathbb{N}\). Dann gilt:

\begin{align*} (x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k} \end{align*}

2. Beweis

2.1. Induktionsanfang

\begin{align*} (x + y)^0 = 1 = \sum_{k=0}^0 \binom{0}{0} x^0 y^0 = 1 \end{align*}

2.2. Induktionsschritt

\begin{align*} (x + y)^{n+1} =& (x+y) (x+y)^n \\ =& x(x+y)^n + y(x+y)^n \\ =& x \cdot \sum_{k=0}^n \binom{n}{k} x^{n-k}y^k + y \cdot \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k} \\ =& \sum_{k=0}^n \binom{n}{k} x^{n+1-k}y^k + \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k+1} \end{align*}

Anwenden des Lemmas Binomialkoeffizient - k > n

\begin{align*} \binom{n}{n+1} =& 0 \\ \Rightarrow \sum_{k=0}^{n} \binom{n}{k} a_k =& \sum_{k=0}^{n} \binom{n}{k} a_k + 0 \\ =& \sum_{k=0}^{n} \binom{n}{k} a_k + \binom{n}{n+1} a_{n+1} \\ =& \sum_{k=0}^{n+1} \binom{n}{k} a_k \\ \Rightarrow \sum_{k=0}^n \binom{n}{k} x^{n+1-k}y^k =& \sum_{k=0}^{n+1} \binom{n}{k} x^{n+1-k}y^{k} \end{align*} \begin{align*} \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k+1} \end{align*}

2.2.1. y

\begin{align*} \sum_{k=0}^n a_{k+1} =& \sum_{k=1}^{n+1} a_k \\ \Rightarrow \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k+1} =& \sum_{k=1}^{n+1}\binom{n}{k-1} x^{n-(k-1)}y^k \\ =& \sum_{k=1}^{n+1}\binom{n}{k-1} x^{n+1-k}y^k \\ \end{align*} \begin{align*} \binom{n}{-1} =& 0 \\ \Rightarrow \sum_{k=1}^{n+1}\binom{n}{k-1} x^{n+1-k}y^k =& \sum_{k=1}^{n+1}\binom{n}{k-1} x^{n+1-k}y^k + \binom{n}{-1} x^{n+1}y^{0}\\ =& \sum_{k=0}^{n+1}\binom{n}{k-1} x^{n+1-k}y^k \end{align*}

2.2.2. Zusammenaddieren

\begin{align*} &\sum_{k=0}^n \binom{n}{k} x^{n+1-k}y^k + \sum_{k=0}^n \binom{n}{k} x^{n-k}y^{k+1} \\ =& \sum_{k=0}^{n+1} \binom{n}{k} x^{n+1-k}y^{k} + \sum_{k=0}^{n+1} \binom{n}{k-1}x^{n+1-k}y^k \\ =& \sum_{k=0}^{n+1} \left( \binom{n}{k} x^{n+1-k}y^k + \binom{n}{k-1} x^{n+1-k}y^k \right) \\ =& \sum_{k=0}^{n+1} \left( \binom{n+1}{k} x^{n+1-k}y^k\right) \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-11-15 Fr 20:13