Maclaurinsche Reihe: Sinus

1. Satz

\begin{align*} \sin(x) =& x - \frac{1}{3!} x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x! ... \end{align*}

2. Beweis

\begin{align*} \sin(x) =& 0 + x + \frac{0}{2!} x^2 + \frac{-1}{3!} x^3 + \frac{0}{4!} x^4 + \frac{1}{5!}x^5 + ... \\ =& x - \frac{1}{3!} x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x! \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 21:26