Kettenregel - mehrere Kompositionen

1. Satz

\begin{align*} f_n(x) \coloneqq& u_1(u_2(...(u_n(x)))) \\ f_n(x)' =& u_1'(u_2(...(u_n(x)))) \cdot u_2'(...(u_n(x))) \cdot ... \cdot u_n'(x) \end{align*}

2. Beweis

2.1. IA

2.2. IS

\begin{align*} f_{n}'(x) =& u_1'(u_2(...(u_n(x)))) \cdot u_2'(...(u_n(x))) \cdot ... \cdot u_n'(x)\\ f_n(x) \coloneqq& u_1(u_2(...(u_n((x))))) \\ f_{n+1}(x) \coloneqq& u_1(u_2(...(u_n(u_{n+1}(x))))) \\ f_{n+1}(x) =& f_n(u_{n+1}(x)) \end{align*} \begin{align*} f_{n+1}(x)' =& f_n'(u_{n+1}(x)) \cdot u'_n(x) \\ =& \left[u_1'(u_2(...(u_n(u_{n+1}(x))))) \cdot u_2'(...(u_n(u_{n+1}(x)))) ... \cdot u_n'(u_{n+1}(x)) \right] \cdot u_n'(x) \\ f_{n+1}(x)' =& u_1'(u_2(...(u_{n+1}(x)))) \cdot u_2'(...(u_{n+1}(x))) \cdot ... \cdot u_{n+1}'(x) \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 21:27