final topology

1. Definition

Let 20230224180620-finaltopologie_73eed9b29d43fbfeded6554d9fef135ba7ec0f7b.svg be a set and 20230224180620-finaltopologie_603e9aeb90f887f23b619b0783a0cfb4a1c32958.svg a family (or even a class) of topological spaces with set-theoretic maps 20230224180620-finaltopologie_cd4367de5653d20f0064e0afec6a50588164c5cf.svg Then the final topology 20230224180620-finaltopologie_63532bca4e8233ad94e98b4329776f7398102677.svg on 20230224180620-finaltopologie_73eed9b29d43fbfeded6554d9fef135ba7ec0f7b.svg is defined by following universal property: Given a topological space 20230224180620-finaltopologie_c369ec44162417e211640a8ba58bff3935984253.svg and a set theoretic map 20230224180620-finaltopologie_e0ab9da6a667cdfbe238cbeb4cd13d4ed9aee0d1.svg, 20230224180620-finaltopologie_5f965d0a56374955f8a17da7129fa95cde5a6603.svg is continuous if and only if 20230224180620-finaltopologie_7398586e9fb55494bd1a0652cdfaca5cd03faaf1.svg is continuous for all 20230224180620-finaltopologie_4b65189679eaf678e24e75492af582c55d269155.svg

20230224180620-finaltopologie_4d6572c2538601df08308f61e66663e7c6bab79e.svg

2. existence / uniqueness

is a dual statement for Initialtopologie, see: basis of a final topology

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 22:01