Homotopy equivalence

1. Definition

Let \((X,\mathcal{T}_X)\) and \((Y,\mathcal{T}_Y)\) be topological spaces and \(f: X \rightarrow Y\) a continuous map. Then \(f\) is said to be a homotopy equivalence, if there exists a homotopy inverse \(g: Y \rightarrow X\)

Date: nil

Author: Anton Zakrewski

Created: 2024-10-11 Fr 22:17