primitive polynomial
1. Definition
Let \(R\) be a ring and \(f = \sum_{i=0}^{n} \alpha_i X^i \in R[X]\) a polynomial. Then \(f \in R[X]\) is a primitive polynomial, if
\begin{align*} (\alpha_n,...,\alpha_0) = R \end{align*}see: generated Ideal
Let \(R\) be a ring and \(f = \sum_{i=0}^{n} \alpha_i X^i \in R[X]\) a polynomial. Then \(f \in R[X]\) is a primitive polynomial, if
\begin{align*} (\alpha_n,...,\alpha_0) = R \end{align*}see: generated Ideal
Date: nil
Created: 2024-10-13 So 15:20