ring homomorphism for a localization

1. Proposotion

Let \(R\) be a commutative ring and \(S^{-1}R\) a localization of a ring for a multiplicatively closed set \(S \subseteq R\) Then

\begin{align*} \varphi: R \rightarrow& S^{-1} R \\ r \mapsto \frac{r}{1} \end{align*}

is a homomorphism

2. Proof

2.1. additive

\begin{align*} \varphi(r + r') = \frac{r + r'}{1} \\ =& \frac{r \cdot 1 + r' \cdot 1}{1 \cdot 1} \\ =& \frac{r}{1} + \frac{r'}{1} \\ =& \varphi(r) + \varphi(r') \end{align*}

2.2. multiplicative

\begin{align*} \varphi(r \cdot r') =& \frac{r \cdot r'}{1} \\ =& \frac{r \cdot r'}{1 \cdot 1'} \\ =& \frac{r}{1} \cdot \frac{r'}{1} \\ =& \varphi(r) \cdot \varphi(r') \end{align*}

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:26