units in a polynomial ring
1. Proposition
Let \(A\) be a commutative ring, \(A[X]\) the polynomial ring and \(f = \sum_{i=0}^{n} \alpha_i X^i \in A[X]\). TFAE:
2. Proof
2.1. 1) \(\implies\) 2)
By assumption, there exists an \(\alpha_0^{-1}\). Furthermore Summe eines nilpotenten Elements und einer Einheit als Einheit
2.2. 2) \(\implies\) 1)
Suppose there exists an \(f^{-1} = \sum_{i=0}^{n} b_i X^i\) Then
\begin{align*} f^n \cdot f^{-1} = \end{align*}https://math.stackexchange.com/questions/19132/characterizing-units-in-polynomial-rings proof by nilradical is nice