units in a polynomial ring

1. Proposition

Let \(A\) be a commutative ring, \(A[X]\) the polynomial ring and \(f = \sum_{i=0}^{n} \alpha_i X^i \in A[X]\). TFAE:

  1. \(\alpha_0 \in A^{\times}\) and \(\alpha_1,...,\alpha_n \in \mathcal{N}_A\) are nilpotent
  2. \(f \in A[X]^{\times}\) is a unit

2. Proof

2.1. 1) \(\implies\) 2)

By assumption, there exists an \(\alpha_0^{-1}\). Furthermore Summe eines nilpotenten Elements und einer Einheit als Einheit

2.2. 2) \(\implies\) 1)

Suppose there exists an \(f^{-1} = \sum_{i=0}^{n} b_i X^i\) Then

\begin{align*} f^n \cdot f^{-1} = \end{align*}

https://math.stackexchange.com/questions/19132/characterizing-units-in-polynomial-rings proof by nilradical is nice

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 15:52