polynomial ring as graded ring
1. Proposition
Let \(R\) be a ring and \(R[X_i \vert i \in I]\) the polynomial ring. Then \(R[X_i]\) is a graded ring with
\begin{align*} R[X_i] \coloneqq \bigoplus_{n \in \mathbb{N}} R_n \end{align*}with
\begin{align*} R_n \coloneqq \{f \in R[X_i] \vert \mathrm{deg}(f) = n, f \text{ homogenous}\} \sqcup \{0\} \end{align*}2. Proof
Let $f =