mapping space in Top
1. Definition
Let \((X,\mathcal{T})\) and \((Y,\mathcal{T}_Y)\) be topological spaces and
\begin{align*} \mathcal{C}(X,Y) = \mathrm{Hom}_{\mathrm{Top}}(X,Y) \end{align*}the hom-set, i.e. the set of continuous maps
A mapping space is a topology on \(\mathcal{C}(X,Y)\) with nice properties see: