homotopy invariant functor and interval
1. Proposition
Let \(\mathcal{C}\) be a category and \(\mathcal{F}: \mathrm{Top} \rightarrow \mathcal{C}\) a functor from category Top
TFAE:
- \(\mathcal{F}\) is homotopy invariant.
- for a topological space \(X\) and the product topology, it follows, that the projection under the functor \(\mathcal{F}(X) \sim \mathcal{F}(X \times [0,1])\)
is an isomorphism
2. Proof
2.1. 1) \(\implies\) 2)
2.2. 2) \(\implies\) 1)
Let
\begin{align*} \iota_t: X \rightarrow& X \times I \\ x \mapsto& (x,t) \end{align*}Then
\begin{align*} \pi \circ \iota_t = \mathrm{id} \end{align*}and hence
\begin{align*} \mathcal{F}(\mathrm{id}) =& \mathcal{F}(\pi \circ \iota_t) \\ =& \mathcal{F}(\pi) \circ \mathcal{F}(\iota_t) \\ \end{align*}Here by assumption, \(\mathcal{F}(\pi)\) is an isomorphism, thus by right inverse of an isomorphism as left inverse it follows, that \(\mathcal{F}(\iota_t)\) is an inverse.
By assumption, there exists a homotopy
\begin{align*} H: X \times I \rightarrow Y \end{align*}where
\begin{align*} H \circ \iota_0 =& f \\ H \circ \iota_1 =& g \end{align*}Hence
\begin{align*} \mathcal{F}(f) =& \mathcal{F}(H \circ \iota_0) \\ =& \mathcal{F}(H) \circ \mathcal{F}(\iota_0) \\ =& \mathcal{F}(H) \circ \mathcal{F}(\iota_1) \\ =& \mathcal{F}(H \circ \iota_1) \\ =& \mathcal{F}(g) \end{align*}