exponential object
1. Definition
Let \(\mathcal{C}\) be a category, \(X,Y \in \mathrm{Ob}(\mathcal{C})\) objects, such that \(\mathcal{C}\) admits products of the form \(- \times Y\). Then the exponential object, if it exists, is defined as representing object of the functor
\begin{align*} X^Y \coloneqq \mathrm{Hom}_{\mathcal{C}}(- \times Y, X) \end{align*}see: