monoidal structure

1. Definition

Let \(\mathcal{C}\) be a category. aA monoidal structure on \(\mathcal{C}\) consists of

  1. a tensor functor
\begin{align*} \otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C} \end{align*}
  1. a tensor unit \(1 \in \mathcal{C}\)
  2. natural isomorphisms a) associator of a monoidal category b) left unitor of a monoidal category c) right unitor in a monoidal category

such that following diagrams commutes

  1. triangle identity of a monoidal category
  2. pentagon identity

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 19:50