natural transformation as functor from the product with the interval category

1. Proposition

Let 20231201-natural_transformation_as_funtcor_for_the_product_2d5d1c2bfbb1a2fca757f722875cd0787290c048.svg be categories, 20231201-natural_transformation_as_funtcor_for_the_product_3221f65a9d78369dbf4016f33de5bafc66fb7e3d.svg be functors.

Then a natural transformation 20231201-natural_transformation_as_funtcor_for_the_product_074f0fc329cd059eabfd83ec404eb4f1c89b2b34.svg is precisely defined by a functor

20231201-natural_transformation_as_funtcor_for_the_product_79f7e358a496631003e5f8f82dc71ae7ec021f17.svg

making following diagram commutes

20231201-natural_transformation_as_funtcor_for_the_product_d77fef3c7d85038b84fcc6177525612e8d6c8be1.svg

see: product category

2. Proof

2.1. natural transformation 20231201-natural_transformation_as_funtcor_for_the_product_8c6f58af0e2c62d582c35c43258609be7d1220f5.svg functor

We define

20231201-natural_transformation_as_funtcor_for_the_product_faffe7ed5f7829b05f04f2e4771dbcb2d9ea0243.svg

Note that by naturality 20231201-natural_transformation_as_funtcor_for_the_product_289425814e6a4f080ff366dc0ff508727c33d821.svg, hence the mapping is welldefined

Then by construction, 20231201-natural_transformation_as_funtcor_for_the_product_842d4531044560657ea14a9ed16afd2ac4f9f809.svg factor through 20231201-natural_transformation_as_funtcor_for_the_product_e7324c8eb18af06e378e60e4c6a406dd32675ac1.svg

now about functorality of 20231201-natural_transformation_as_funtcor_for_the_product_aa699af8b052820cdd98bf8bee54004084151ed7.svg:

2.1.1. identity

follows from

20231201-natural_transformation_as_funtcor_for_the_product_27f8516b6cad9fb114dc016bd7641b19f4f4a55a.svg

2.1.2. composition

For composition within 20231201-natural_transformation_as_funtcor_for_the_product_79ed5d56940808f9d52bb99a56e88c3a33ec57ae.svg and 20231201-natural_transformation_as_funtcor_for_the_product_d97435a153f3bd342dbea9b1424eb806058cc9b9.svg, this follows from functorality of 20231201-natural_transformation_as_funtcor_for_the_product_842d4531044560657ea14a9ed16afd2ac4f9f809.svg

For 20231201-natural_transformation_as_funtcor_for_the_product_c21230205dc09c0a652086ac2be76951168225b1.svg we get

20231201-natural_transformation_as_funtcor_for_the_product_dea2e7f40886b257cd1379696e15818983ff594a.svg

where applying functorality of 20231201-natural_transformation_as_funtcor_for_the_product_f1aeb1ac71cce52f443892bfa958e0fd4a349772.svg results in

20231201-natural_transformation_as_funtcor_for_the_product_8e05847f09d2b79852ad49b57e015f749ff91d8e.svg

For $(f, 1) ˆ (g, 0 → 1) = (f ˆ g, 0 → 1) $ we get

20231201-natural_transformation_as_funtcor_for_the_product_2070bf658e1b936ffcd9d6c0589314c6becfbe40.svg

where applying functorality of 20231201-natural_transformation_as_funtcor_for_the_product_ab6375d883249cb216e6b08b3a65145c67c490c0.svg results in

20231201-natural_transformation_as_funtcor_for_the_product_be517e121954ebe188b4b9beb13f4a359f4e8348.svg

2.2. functor 20231201-natural_transformation_as_funtcor_for_the_product_8c6f58af0e2c62d582c35c43258609be7d1220f5.svg natural transformation

We define

20231201-natural_transformation_as_funtcor_for_the_product_364e8b5106072c03920cecd53fe285d6e407585c.svg

Thus we get a diagram

20231201-natural_transformation_as_funtcor_for_the_product_6140a29819bd9adf1ea184eb87e72c46a3a1e7bf.svg

Note that the Right half commutes, since the first half commutes. Furthermore, by assumption of factorization, we get 20231201-natural_transformation_as_funtcor_for_the_product_e9db6aaa02b2e499622923a18d62f9a4cd7808a8.svg

therefore this construction satisfies naturality

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 19:51