colimit of functors for a cocomplete codomain

1. Proposition

Let 20231219-colimit_of_functors_2d5d1c2bfbb1a2fca757f722875cd0787290c048.svg be categories, 20231219-colimit_of_functors_cb95057cc98eb5b6ce7490e0edbfd46260649f0f.svg the functor category,

20231219-colimit_of_functors_2cbfb868859bab40bba05bd33e23730072ed4fd9.svg

a diagram, such that for each

20231219-colimit_of_functors_9b0fa9dfafede5d43ece475caf73b9114274901b.svg

there exists a colimit 20231219-colimit_of_functors_d9ace5571369e036cd013e9ecd7f8f7f933742f5.svg.

Then the colimit in 20231219-colimit_of_functors_cb95057cc98eb5b6ce7490e0edbfd46260649f0f.svg is

20231219-colimit_of_functors_83f930f15c05935caaae74f04d3b8166c0204a78.svg

where 20231219-colimit_of_functors_bf4d831c2fa80d2ebaebc73daf8931ecf634703e.svg is the restricted colim functor for the diagrams

20231219-colimit_of_functors_22687bb13bbe12cd9906e0f4f647486943b701b7.svg

2. Proof

2.1. welldefined

follows from the functorality of the colimit functor. Note that by assumption, there exist enough colimits.

2.2. universal property

Suppose that there exists a functor 20231219-colimit_of_functors_e761bfcf0388486bf936eed1816f92fdc1021645.svg and natural transformations

20231219-colimit_of_functors_2aa803f51bdb40288125a1130a0b9dc5222cb93c.svg

Then for each component 20231219-colimit_of_functors_925e403e9996479c296d38d7b008fe7338518037.svg, it follows, that

20231219-colimit_of_functors_64d1ec54f7304626baf587b7c50ebdaa3abc1c95.svg

commutes.

Hence by universal property of 20231219-colimit_of_functors_25074c53171b1f39b01a15a6adb1c1627778b499.svg there exists a unique morphism

20231219-colimit_of_functors_e46efc7bf075dbb06c610aa5ada86499cf7a5084.svg

Let

20231219-colimit_of_functors_54437d3248422182fdc67c8ec2f5a7f1e56bc8d0.svg

2.2.1. welldefined

Let

20231219-colimit_of_functors_3a943f8c93949ef6830e5358c9b1d6b06d25dd31.svg

Then by assumption, the diagram above commutes, hence also

20231219-colimit_of_functors_5122db0bea9568631e5595f15ec7dafe7981c021.svg

commutes.

Furthermore, there exists a unique morphism

20231219-colimit_of_functors_50c3bfe2758152923f023daea43b6cfcd785ff09.svg

making the diagram commute

Hence by uniqueness of

20231219-colimit_of_functors_b4e87abeb6f5e7da5535520eb3a930688cde6d74.svg

we conclude, that bottom half

20231219-colimit_of_functors_57683636a489621494790367b4a69556adea0e73.svg

commutes.

Therefore, we have a welldefined natural transformation between 20231219-colimit_of_functors_678085a6b9941d02499d79cc86b2537697bb3bde.svg and 20231219-colimit_of_functors_ab6375d883249cb216e6b08b3a65145c67c490c0.svg

2.2.2. uniquness

Suppose we have two natural transformations 20231219-colimit_of_functors_70e0b0a2946d27561cedd44881e36e9f532e2120.svg.

Then for each component

20231219-colimit_of_functors_92f4efe196dcb2c092c3c41f85193dc9ec9b5ba8.svg

is a commutative diagram for 20231219-colimit_of_functors_4ef81ae39c339b0e33bf01fbe082295c7384ddec.svg resp. 20231219-colimit_of_functors_e3d2197f23ec1a235fc0f8f085d609a6cb6d6999.svg

Hence we conclude by universal property of 20231219-colimit_of_functors_5cccf32b79af49ee2abe0e961e9931b33a86d410.svg, that 20231219-colimit_of_functors_988f39d7fd07050f2159c6d9a48a155c4f2e8ec9.svg is unique, thus

20231219-colimit_of_functors_91999deb32a4de2472e60d23b626f5fd59d781d5.svg

Since 20231219-colimit_of_functors_9c8bdb9f6ad11c13881249483fa93b024273b477.svg was arbitrary, it follows, that

20231219-colimit_of_functors_e55376cba4757390bf770b67829bdb10272475bc.svg

Date: nil

Author: Anton Zakrewski

Created: 2024-10-13 So 23:53