left exact functor preserves zero morphisms

1. Proposition

Let \(\mathcal{C}, \mathcal{D}\) be a pointed, finitely complete categories and \(\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}\) a left exact functor Then \(\mathcal{F}\) preserves zero morphisms

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 08:49