additive functor and zero morphism

1. Proposition

Let \(\mathcal{A}, \mathcal{B}\) be additive categories and \(\mathcal{F}: \mathcal{A} \rightarrow \mathcal{B}\) be an additive functor Then for \(A,B \in \mathrm{Ob}(\mathcal{A})\) and the zero morphism \(0: A \rightarrow B\) it follows, that

\begin{align*} \mathcal{F}(0) = 0 \end{align*}

2. Proof

Date: nil

Author: Anton Zakrewski

Created: 2024-10-14 Mo 09:06