relative infinite elementary linear group

Definition

Let \(R\) be a ring, \(\mathfrak{a} \subseteq R\) an ideal
Then the relative infinite elementary linear group is defined as kernel

\begin{align*} E(R, \mathfrak{a}) := \mathrm{ker}(\pi_*: E(R \times_{R/\mathfrak{a}} R) \rightarrow E(R)) \end{align*}

for the infinite elementary linear group functor

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 17:24