relative infinite general linear group and projection

Proposition

Proof

a)

Let

20241017-relative_infinite_general_linear_group_and_projection_077507e43ba7af19005e42bb51f88dc0b0d223a8.svg

be an element of 20241017-relative_infinite_general_linear_group_and_projection_a4eae6c75d78e5fe62bd86e7113b22210979f180.svg.

Then by definition of 20241017-relative_infinite_general_linear_group_and_projection_0332d44924a071a7f47211b011a33736dc8064a0.svg we have

20241017-relative_infinite_general_linear_group_and_projection_200ffbea622f1b8f86000395d139b2ca66d4be0f.svg

and by definition of 20241017-relative_infinite_general_linear_group_and_projection_be2fb2aa0b4777f80526d30877d58840045a6bb7.svg we know that 20241017-relative_infinite_general_linear_group_and_projection_c03ef51fe048afd97ae2471cc010fd90a4d6fb10.svg (cf. explicite description of a pullback of a ring and ideal)

This shows that

20241017-relative_infinite_general_linear_group_and_projection_f2e921c605650835a4516e4e85438e3eec7d5549.svg

Thus the map is welldefined.

It follows that this map is a bijection

b) alternative proof

follows from

for the diagram

20241017-relative_infinite_general_linear_group_and_projection_f124d22586e90f117112f818b5e7b2cc72171723.svg

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 18:00