relative K1-Group of a ring and ideal

Definition

Let \(A\) be a ring, \(\mathfrak{a}\) be an ideal
Then the relative \(K_1\)-group \(K_1(R, \mathfrak{a})\) is defined as quotient group

\begin{align*} K_1(R, \mathfrak{a}) := \mathrm{GL}(R, \mathfrak{a}) / E(R, \mathfrak{a}) \end{align*}

where

  1. relative infinite general linear group
  2. infinite elementary linear group

Date: nil

Author: Anton Zakrewski

Created: 2025-01-15 Mi 17:48